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The Challenge of Fluid Flow 
1. The Diversity of Flow Phenomena 

Roddam Narasimha 

You look up at the sky, and see a lovely cloud; you look 
down, and may see lovely ripples on a rivulet (or river). On 
a hot summer afternoon you see dancing dust devils; on a 
cold winter evening you can see smoke rising lazily from a 
chulah, and hang up there as if it has given up. 

You peer at a telescope, and see intense supersonic jets, or 
vast whirling galaxies; you measure in a wind tunnel, and 
sense powerful tornadoes behind an aircraft wing. The 
universe is full of fluid that flows in crazy, beautiful or 
fearsome ways. 

In our machines and in the lab, as in terrestrial nature, one 
sees this amazing diversity in the flow of such a simple 
liquid like water or a simple gas like air. What is it that 
makes fluid flows so rich, so complex - some times so highly 
ordered that their patterns can adorn a saree border, some
times so chaotic as to defy analysis? Do the same laws 
govern all that extraordinary variety? 

We begin with a picture gallery of a number of visible or 
visualized flows, and consider which ones we understand 
and which ones we do not, which ones we can compute and 
which ones we cannot; and it will be argued that behind 
those all-too-common but lovely flows lie deep problems in 
physics and mathematics that still remain mysteries. 

The Diversity of Flows 

Almost anywhere we look we see a fluid flow: air, water, smoke, 

steam, oil or something. And the diversity of the flows we see, 

even with our unaided eyes, is astonishing. You look up at the 
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sky, and may see striking clouds - white, pretty and fluffy 

against a perfectly blue sky, or black and threatening against a 

gray one. You look down at the ground, and may see a wonderful 

medley of ripples, whirlpools, jumps or bores on a tiny rivulet of 

water - or on a mighty river. On a hot summer afternoon you can 

see dust devils - suddenly twisting themselves into shape pick

ing up all kinds ofloose dirt, and darting wildly around for some 

seconds before they flop out. On a cool winter evening you can 

see warm smoke rising lazily from a ckulak out in the open, and 

hang up there a few metres above ground with no energy left to 
push into the cooler, heavier air around. You can go to Jog and 

keep gazing at the four waterfalls there - majestic, awesome, 

graceful, and so different from each other although they are all 

making about the same leap. 

With the power of modern instrumentation the range of what we 

can see goes up enormously. If you peer at a telescope, or the 
pictures it takes, we can see swirling nebulae whose sizes are 

measured in hundreds of thousands of light years. If you have 
a microscope you can see minute organisms (like spermatozoa, 
for example) darting here and there in the surrounding medium. 

If you can inject smoke and shine laser beams you can see 

powerful vortices that would otherwise be invisible in air, such 
as those that trail behind aircraft. From satellites we can see 

cyclones that can wreak havoc. And there can be terrible 
tsunamis of the kind we experienced in south and south-east 

Asia on 26 December 2004. I have put together a collection of 
some flow pictures of this kind in Figure 1 - I hope you will agree 

that they can be crazy, beautiful and fearsome in turn. (A 
wonderful album compiled by Van Dyke has many others.) 

One can go on endlessly like this. This diversity offluid motion 

has fascinated man for thousands of years. The Yoga- Viisi~tha 

(written perhaps around +6 or 7 c.) uses fluid flow metaphors 
extensively, and compares the complexity of the human mind 

with that of flowing water: 
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Figure 1. A gallery of fluid flow pictures. a. Cumulus clouds of the kind often seen in India, 

called the 'queen of the tropical sky' by the well-known American meteorologist Herbert Riehl. 
b. Smoke rising lazily from the chulahs as a Himalayan trekking group prepares breakfast early 

in the morning. c. The four well-known water falls in Jog all leap over about the same depth 
(about 260 my. How is it that they look so different from one another in structure? d. The great 
red spot in Jupiter, about 12 000 km across, from images transmitted by Voyager. Are the huge 
swirling motions ordered or disordered? e. A spiral galaxy (NGC 1232 in the constellation 
Eridanus), as seen in different wavebands (very bright areas emit strong ultra-violet radiation 

and indicate star formation regions). f. A cyclone in the Arabian Sea off Gujarat, from INSA T 

imagery (8 June 1998). 

Courtesy (Figures d, el: Lion Heart Books Ltd. (Figure fl: ISRO 
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As water displays itself richly dharQ-ka~ I -Ormi-phe~-~~rfr. 

vatho .~alnJa~yate. ' mbhasa,l .. 
latha vicilra-vihhaw.l 

In current, wave, foam and spray, 
So does the mind exhibit 

nanDI". eyall; hi celasab. If 
A strange, splendid diversity. (3: 110.48) 

Figure 2. A Japanese print 
entitled 'Wind and wave at 
Awa-Nruto', by Hiroshige 
Utagawa (1797-1858). 

. . 

Elsewhere the author sings of the beauty of a whirlpool in 

swaying water (iilola-salil'-iivarta-sundari'). And, as if in 
illustration of Viisi~tha poetry, the Japanese painter Hiroshige 
Utagawa (1797-1858) catches its essential spirit in a lovely print 
of Wind and Wave (Figure 2). In renaissance Europe Leonardo 
da Vinci (1452-1519), who combined within himself the hands 
and eyes of an engineer as well as an artist, drew wonderfully 

faithful pictures of vortices in turbulent water flow. 

Do we understand these diverse flows? How many of them can be 
described by a convincing theory? How many can be computed? 
After all, isn't the flow of fluids a 'classical' subject, whose 
governing laws were set down in the first half of the 19th 

century? It may be interesting to put together an 
album of pretty flow pictures, but are there new things 
to discover? (Answer: yes.) Why do people (like me) 
spend a life-time investigating fluid flow problems, 
pursuing the rather esoteric discipline of ' fluid dynam
ics'? 

It is my intention here to try and answer these ques
tions. But before offering answers, we need to look at 

those flows and grasp their nature a little better. 

Order and Chaos 

One of the most striking features of many fluid flows 
that has fascinated all observers - ancient and modern 
- is the strange mix of order and chaos that is their 
characteristic. At one extreme, a flow can be incredibly 
well-ordered. For example, consider the case of what is 
called Rayleigh-Benard convection between two large 
horizontal plates, the lower one of which is warmer 
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than the upper. If the temperature difference between the plates 
is sufficiently small there is no flow at all, and heat is transported 
from the lower to the upper plate through thermal conduction in 

the enclosed fluid - which might just as well have been a solid, 
it would have made no difference. But as the temperature differ
ence exceeds a critical value the fluid suddenly overturns into 
motion, in a row of highly organized rolls (Figure 3) (or a pattern 

of hexagonal cells as seen from the top if the upper surface is 
free). Those rolls can be so steady in time and so repeatable in 

space that they could well decorate a saree border. As the 
temperature difference increases the rolls get distorted and 

begin to sway and list, and eventually break down into chaotic 
motion. We see one example of such breakdown in the bottom 

panels of Figure 3. (But, as we shall see shortly, such apparently 
chaotic motion may well contain hidden order.) 

Saree-border type organization may also be seen in a variety of 
other situations - most famously in the flow in the wake of a 

circular cylinder. (By the principle of Galilean invariance, the 
relative flow is the same whether the cylinder moves in still fluid 

or the fluid flows past a cylinder at rest; so we shall use either 
frame interchangeably.) In this case, as a critical velocity is 

exceeded the flow in the wake spontaneously breaks into two 
parallel rows of staggered vortices - clockwise in one row, anti

clockwise in the other (Figure 4), forming what is called a 
Karman vortex street. (See article in current issue.) (We often 

'hear' those vortices when power lines sing in wind; the Greeks 
even had an 'aeolian' harp, whose strings were resonantly 

Figure 3. Thermal convec
tion in a box (10:4:1) (lower 
plate warmer), showing 
changes from saree-border 
type ordered motion (top) 
towards turbulent convec
tion (bottom, box rotating). 
In the middle picture the 
temperature differential is 
higher at the right. 
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Figure 4. Another ordered 
motion: the Karman vortex 
street behind a circular cyl
inder. This staggered ar
rangement of vortices in 

two parallel rows is 'stable'. 
(See Box 2 on Reynolds 
number.) 

Figure 5. An idealized, sche
matic picture of how transi
tion from laminar to turbu
lent flow occurs in the 
boundary layer on a flat 
plate, from two-dimen

sional instability through 
turbulent spots to fully de
veloped turbulent flow. 
(Reproduced from Frank M 
White, Viscous Fluid Flow, 
McGraw-Hili International 
Editions, 1991). 
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'plucked' by natural wind.) As the velocity is increased further, 

the Karman vortex street breaks down into apparent chaos, but 

again, it turns out, with hidden order in it. 

Instability and Transition to Turbulence 

In these and other cases, the appearance of order actually marks 

the onset of an instability (Box 1). The critical condition that 

sparks this onset is given not so much by a temperature differ

ence or flow velocity, which may be specific to a particular appa

ratus and fluid, as (much more generally) by an appropriate non

dimensional number like the Rayleigh number in convection 

and the Reynolds number in flow past bodies. (Boxes 2 and 3). 

u 
~ 
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~ 
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laminar 
flow 

Laminar! ....... t-----Transition length---~ .. I Turbulent 
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Box 1. Flow Instability 

The words stability and instability are used in so many different senses that it is not possible to go into all 

of them here. Briefly, the idea in linear stability theory is that a system in a certain state is stable if a small 

perturbation made on it decays, unstable if it grows. In some flow systems, a small perturbation may grow 

exponentially under certain conditions - e.g. if the relevant non-dimensional number (see Box 2 or 3) 

exceeds a critical value. This growth may however soon reach saturation through nonlinear effects. 

Consider the Karman vortex street as an example. The arrangement of Figure 4 is stable in the sense that 

if any vortex in the system is displaced, the effect of the rest of the vortices is such as to take the perturbed 

vortex back to its original position. However, the birth of the vortex street itself is a result of an instability 

that occurs at a critical cylinder Reynolds number (see Box 2) of about 48.5. In fact, the Karman vortex 

street is best seen as an example of a global fluid-dynamical oscillator, which makes its appearance at the 

critical Reynolds number of 48.5. (At this critical value the flow encounters what is known as a bifurcation: 

this is a point of structural instability, at which the solution can exhibit a significant qualitative change in 

its structure - e.g. from a steady state to an oscillatory state.) 

In the boundary layer on a flat plate, as Figure 5 suggests, the flow is laminar and stable to small 

perturbations till a critical Reynolds number of about Re = U x Iv = 105 is reached (here x is distance from 

the leading edge). Beyond this point sinusoidal disturbances of certain frequencies can grow as they travel 

downstream in space, till they reach a point where the boundary layer has grown enough to be no longer 

unstable to those frequencies. From then on the disturbance decays. However, the flow is now unstable 

to other frequencies, which again can grow in amplitude before they also eventually decay again. On the 

whole, disturbance of so~e frequency or other will keep growing beyond the critical point. All these 

disturbances travel downstream, so if the original disturbance is a pulse at some point, the disturbance at 

that point vanishes eventually but will be present in some form at some downstream location at some later 

time. Such an instability is called convective. 

In contrast to the Karman vortex street, the boundary layer is best seen as a selective amplifier, in the sense 

that the instability waves appear only because there is a forcing somewhere almost always in the 

environment. If the environmental disturbance levels are reduced transition to turbulence is delayed; the 

best reading of the experimental evidence suggests that the critical Reynolds number is inversely 

proportional to the environmental disturbance intensity, and so can increase without limit as the 

environment becomes increasingly 'quiet'. There is in this view no such thing as 'natural' transition on a 

flat plate, although that phrase is unfortunately still widely used in text books and in engineering practice. 

I myself have long been interested in flow past surfaces, such as 
e.g. an aircraft wing. What happens here in a simple and rather 
idealized situation is illustrated in Figure S. At a critical distance 
from the leading edge (more precisely a Reynolds number based 

on that distance) instability waves can appear in the flow, and 
grow downstream; eventually they break down into islands of 
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Box 2. The Reynolds Number 

Fluid flows are determined by a variety of forces pressure, viscous stresses, gravity (including 

buoyancy), surface tension, electro- and ferro-magnetic etc. As it is impossible (and rarely desirable) to 

take all of them into account in analysing specific flows, fluid dynamicists identify various non

dimensional groups that give some indication of which among these many forces may be dominant in any 

given situation. The grand-father of all such non-dimensional groups is the Reynolds number, named after 

the British engineer Osborne Reynolds who first showed the value of the concept in his studies of pipe 

flow, treated elsewhere in another box (see Box 4). 

The Reynolds number is commonly thought of as a measure of the ratio of inertial to viscous forces. The 

inertial force is another name for the effective acceleration of the fluid. Because a fluid is a continuous 

medium, all these forces are most conveniently estimated for unit volume of the fluid. It must be 

remembered that only estimates of orders of magnitude are involved in forming non-dimensional groups 

like the Reynolds number. 

As an example, consider the flow of an incompressible fluid of density p and viscosity J1 at a velocity U 

past a circular cylinder of diameter D. As velocity changes of order U may be expected to occur over 

distances of order D, a characteristic flow time is of order DIU, and a characteristic acceleration of a fluid 

element is of order UI(DIU) = eJ2ID. So the inertial force is of order peJ2ID per unit volume. The viscous 

stress is typically of order J1 UID, and its spatial rate of change J1 UID2 gives a measure of the viscous 

force per unit volume. The ratio of the two is the Reynolds number 

Re= pU
2 

D2 = pUD, == UD 
D p,U p, II 

where it is convenient to introduce V=J1 Ip as the 'kinematic' viscosity (so called because its units, m2/s 

in the metric system, do not involve mass). 

Note that we could just as well have used the radius of the cylinder (rather than the diameter) in defining 

the Reynolds number. In that case the numerical value of the Reynolds number would be half of what is 

given above. This only shows that there can be arbitrary numerical constants in defining the Reynolds 

number, and when quoting numerical values for it we must clearly state the specific choices for the 

quantities that go into it, and stick to those choices. All the more reason why the Reynolds number in one 

class of flow (flow past cylinders, e.g.) cannot be directly compared with values in a different class (e.g. 

wings). Once a choice is made, however, we can say that a doubling ofthe Reynolds number will double 

the inertial force in comparison with viscous forces. 

Reynolds numbers vary widely for different flow types - from something like 10-2 for the mote in the 

sunbeam to nearly 1012 for a tropical cyclone. 

The Reynolds number is a non-dimensional group in the sense that its value will be the same in any 

internally consistent system of units - SI, British, etc. 

--------~~------
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chaos called turbulent spots, which themselves grow and propa
gate downstream till the flow becomes 'fully turbulent'. 

What I have described above is the phenomenon of flow 
transition - from laminar flow (no disorder) to turbulent flow 
(apparently complete disorder). Such a transition occurs in 

virtually every known flow type, often through one or more 
intermediate stages of instability of one kind or another. In some 
flows transition is abrupt or 'hard', in others it can be gradual 
and slow ('soft'). It can even be both: spots can appear suddenly, 

but full-time turbulence emerges slowly as spots need time to 
grow before they cover the surface. If the non-dimensional 
parameter governing the flow, like a local flow Reynolds num
ber, varies in space (as in Figure 5) or in time (as it does in the 
upper reaches of our lungs especially if we are breathing hard, 
say after jogging), the transitional sequence from laminar to 
turbulent flow may occur in space or in time (or in both). 

Box 3. The Rayleigh Number 

The Rayleigh number does for free convection what the Reynolds number does for incompressible flows. 

Consider the situation illustrated in Figure 3: two horizontal plates separated by a vertical distance h, the 

gap being filled with a fluid of characteristic density Po' viscosity J.l.o and temperature To' The flow is now 

driven by a temperature difference !1T. As no characteristic flow velocity is explicitly prescribed in the 

statement of the problem, it has to be estimated from the other parameters. We do it this way. Thermal 

conduction diffuses temperature, the corresponding fluid property being the 'kinematic' diffusivity lCo ( = 

ko / Po c, where ko is the thermal conductivity and c the specific heat). Now a characteristic diffusion time 

to smear out a temperature difference of !l.T over a distance h is h2/Ko (easily checked dimensionally). 

The effective acceleration due to buoyancy force per unit mass is g !l.plpo' - g !l.TITo' where!l.p and !l.T 

are the characterislic density fPd temperature differences. So the velocity that develops due to this 

'acceleration' over the diffusion titne isg (!1T/T J (h2/lCo) • The corresponding Reynolds number works out 

to what is called the Rayleigh number 

Ra= gh2aT h =gh3aT. 
KoTo Vo . ToKoVo 

Another non-dimensional group we will run across is the well-known Mach number, the ratio of flow 

velocity to the acoustic speed. This ratio provides a measure of the thermodynamic elastic forces operating 

in a compressible flow. If the Mach number is small the 'elastic' forces leading to sound propagation are 

also relatively small, so the flow behaves as if it is incompressible. 
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Reverse Transition -Turbulent Flow Becoming 
Laminar 

Under certain conditions (e.g. if the local Reynolds number 

decreases downstream) a turbulent flow can revert to a laminar 
state. This indeed happens in our lungs, as the air flows down 

from the wind pipe into numerous tiny bronchioles. This reverse 
transition from disorder to order does not violate the second law 

of thermodynamics, because the flows we are discussing are 
open systems. Some instances of such relaminarization are 

illustrated in Figure 6. You can sometimes see it in the evening 
sky, when a cloud, bubbling up from the ground, seems all of a 

sudden to lose its rough edges and bulges out into a smooth 
bump. This happens when the cloud hits what is called an 

'inversion' - a situation where the temperature locally increases 
with height, rather than decreasing as it most commonly does. 

The rising air then becomes heavier than the air above the 
inversion and subsides, having converted its kinetic energy to 

gravitational. This is similar to the chulah smoke mentioned 
earlier, and one of the pictures in Figure 6 is a laboratory 

simulation of this effect. 

Figure 6. 'Reverse' transition from turbulent to laminar flow. a (left). Flow comes into coiled tube 
from top left in a turbulent state (notice how tube is filled with red dye), but leaves in a laminar state 
(green filament injected at bottom does not spread). b (right). Jet of dyed water flow up in a tank. On 
the left, the jet starts out laminar, transitions to turbulence. On the right, the turbulent jet so formed 
reverts to a laminar state as it hits a stabilizing density gradient created by heating the water at the 
top and making it lighter. 
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Box 4. Laminar-turbulent Transition 

It is a matter of common observation that fluid flow can be in one of two fundamentally different states. 

One of them, called laminar, is regular, smooth or ordered, and the other, called turbulent, is irregular, 

chaotic, disordered. In steady laminar flow the velocity at any point is either a constant in time, or has 

orderly (periodic or related) fluctuations. In turbulent flow the velocity is fundamentally time-dependent, 

exhibits no apparent order, has contributions from all frequencies, and has vorticity (.i.e. fluid elements 

have local spin). Some typical turbulent traces are shown in Figure 7. 

The first scientific study of the transition from laminar to turbulent flow was conducted by Reynolds 

(Figure a) in a pipe. He detected turbulent flow by injecting a filament of dye at a point on the centre-line 

near the entry to the pipe. If the flow was laminar the dye remained a straight filament along the centre 

line. But if the flow were turbulent the dye spread across the pipe colouring the fluid in the whole pipe. 

Laminar and turbulent flow can be made out easily in Figure 6. 

By experimenting with different fluids in pipes of different diameter, Reynolds discovered that transition 

occurred at more or less the same value of what later came to be called the Reynolds number (see Box 2). 

(The name was given by the physicist Arnold Sommerfeld.) In Reynolds's own experiments the critical 

value of Re, defined as UDlv, where U is the average velocity across the pipe of diameter D, turned out 

to be around 2300. 

We now know that the situation is not so simple; if great care is taken in reducing environmental distur

bances, flow perturbations, asymmetries, pipe roughness etc., very high transition Reynolds numbers 

(multiple of 105) can in fact be obtained. Between fully laminar and fully turbulent states appear travelling 

'slugs' of turbulent flow - preceded and followed by laminar flow - called 'flashes' by Reynolds. 

As we show elsewhere, there are also conditions when a turbulent flow can revert to a laminar state - a 

transition in the reverse direction, often called relaminarization, is therefore also possible. 

Figure: Osborne Reynolds demonstrating transi
tion in pipe flow. Inset shows sketches of the 
nature of the flow in the pipe, as visualized by a 
filament of dye injected along the centre-line of 
the pipe. The sketches illustrate laminar flow, 
turbulent flow, and turbulent 'flashes'. (Reynolds 
1883 Phil. Trans. Roy. Soc. 174:935-982. Interest
ingly, the paper starts with the sentence, 'The 

~1!~~~!IIII~~@ results of this investigation have both a practical 
:::::::.and philosophical aspect' - a thought that cap-

tures the enduring appeal of fluid dynamics.) 
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We recently discovered, to our as

tonishment, that as many as six such 

transitions - back and forth between 

laminar and turbulent flow - can 
occur in a narrow strip around the 

leading edge of the kind of swept 

wing that is typical of modern civil

ian passenger aircraft (such as 
Boeing and Airbus make). Figure 7 

shows how wildly the output from 

hot-film sensors stuck on the sur

face of such a wing can vary from 
one sensor to the next, under condi

tions typical of take-off or landing. 
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Figure 7. Flow past an ide
al/zed leading edge of a 
swept wing, of the kind 
commonly used in trans
port aircraft. Conditions 
correspond to those at high 
angles of attack, as aircraft 
is landing or taking off. The 
flow appears to go through 
several transitions, as seen 
from the traces of the wall 
stress. The most striking 
characteristic of these 
traces is the dramatic varia
tions in fluctuation inten
sity; to clearly Identify tran
sitions between laminar 
and turbulent periods re
quires some sophisticated 
signal processing, involv
ing estimates of intermit
tency or skewness in the 
signals. 

Is Turbulence 'Totally' Random? 

I have talked loosely of transition from order to disorder or the 
other way round, but this is slightly misleading because (as I 

have been hinting) that fully turbulent flow is often not com

pletely disordered. Instantaneous pictures of simple turbulent 

mixing layers - i.e. the flow at the interface between two streams 

moving at different velocities - showed dramatic evidence of 
unsuspected spatial organization into large-scale vortices (Fig
ure 8), of which there had been hardly any hint in the numerous 

local measurements that had earlier been made in the same 

flows. These Brown-Roshko vortices (so called after their dis
coverers) are no longer strictly periodic, nor are they identical to 

each other. (So they are okay for modernist saree borders.) The 

Figure 8. Ordered structure in a 'turbulent' mixing layer, as seen in 
a wavelet transform of a picture due to Brown and Roshko. 

-78-------------------------------~~-----------R-E-SO--N-A-N-C-E-I-A-U-9-U-S-f-2-0-0-S 



GENERAL I ARTICLE 

turbulence reveals itself in the jitter and variability that charac

terize these vortices, and in the disordered motion at smaller 

scales. So even what is called fully turbulent flow often contains 

coherent structures of organized motion within itself. 

Let us look at a less obvious example. Figure 9 shows the cross

section of a jet illuminated by a sheet of laser light. (We can 

think of it as a slice of flow issuing towards this sheet of paper 

from a circular orifice well below.) The fluid coming out of the 

orifice is dyed, so the picture shows how this jet fluid is mingling 

and mixing with the ambient fluid drawn into the jet. The raw 

image on the left - with false colouring indicating dye concen

tration - is what we normally associate with fully turbulent flow. 

(Notice by the way all those thin structures in the picture.) The 

image on the right is a wavelet transform - a spatial filter that 

eliminates both smoother and sharper variations than a speci

fied scale. At the scale chosen, we found that a lobed ring-like 

structure pops out, presumably representing a wobbly, azimuth

ally unstable vortex ring. At much smaller scales the wavelet 

transform looks random. 

In Part 2, we will consider how these phenomena have been 

handled, what we can compute and what we can measure, and 

where the hard, grand challenges to our understanding lie. 

Figure 9. On the left is a 

false-colour image of the 
diametral cross section of 
a dyed jet (like the one in 
Figure 6b), taken by laser
induced fluorescence tech
niques. The flow seems 
disordered, but a wavelet 
transform at a suitable 
scale reveals a fluted ring
like structure - perhaps a 
lobed vortex ring exhibit
ing the well-known Wldnall 
instability, all hidden in the 
picture on the left. 
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