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Abstract:

Climate change would significantly affect many hydrologic systems, which in turn would affect the water availability, runoff,
and the flow in rivers. This study evaluates the impacts of possible future climate change scenarios on the hydrology of the
catchment area of the Tunga–Bhadra River, upstream of the Tungabhadra dam. The Hydrologic Engineering Center’s
Hydrologic Modeling System version 3.4 (HEC-HMS 3.4) is used for the hydrological modelling of the study area. Linear-
regression-based Statistical DownScaling Model version 4.2 (SDSM 4.2) is used to downscale the daily maximum and minimum
temperature, and daily precipitation in the four sub-basins of the study area. The large-scale climate variables for the A2 and B2
scenarios obtained from the Hadley Centre Coupled Model version 3 are used. After model calibration and testing of the
downscaling procedure, the hydrological model is run for the three future periods: 2011–2040, 2041–2070, and 2071–2099. The
impacts of climate change on the basin hydrology are assessed by comparing the present and future streamflow and the
evapotranspiration estimates. Results of the water balance study suggest increasing precipitation and runoff and decreasing actual
evapotranspiration losses over the sub-basins in the study area. Copyright © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

The increasing awareness that enhanced levels of
greenhouse gases of direct/natural or indirect anthropo-
genic origin in earth’s atmosphere might change the
climate of different regions of the world, in the long run,
has recently instigated a great deal of research into the
projection of regional responses to global climate change.
Various general circulation model (GCM) experiments
and studies indicate that a substantial rise in global
temperature would be expected as a consequence of a
doubling of carbon dioxide (CO2) concentrations. As a
result, climatic processes are likely to intensify, including
the severity of hydrological events such as droughts, flood
waves, and heat waves. These projected effects of
possible future climate change would significantly
affect many hydrologic systems, which in turn affect
the water availability and runoff and the flow in rivers.
Hence, an assessment of the possible impacts of climate
change on the hydrology of a basin is essential in the
wake of global warming.
Physically based distributed hydrological models

designed to understand and approximate the general
internal processes and physical mechanisms, which
govern the hydrologic cycle and incorporate the physical
laws of water movement and the parameters associated
with the characteristics of the catchment area (Sorooshian
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and Gupta, 1995), have been found to be useful for such
impact assessment studies. By simulating streamflow
from precipitation and temperature data derived from
GCM outputs corresponding to the specific climate
change scenarios, using a suitable hydrological model,
it is possible for one to quantify the corresponding
changes in the hydrology of the basin. However, the
projections of the estimates of these climate variables for
a future period obtained directly from GCMs are of
limited value for any study as the spatial resolution of
GCM is too coarse to resolve many sub-grid scale
hydrological processes and because the output is always
unreliable at individual grid. Spatial downscaling
methods have been proposed to solve this problem. The
methods used to convert GCM outputs into local
meteorological variables used for hydrological modelling
are referred to as downscaling techniques (Dibike and
Coulibaly, 2005; Xu et al., 2009). The widely used
method of statistical downscaling involves bridging of the
two different scales by establishing empirical relation
between large-scale variables reliably simulated by the
GCMs at grid-box scales (e.g. mean sea level pressure
and geopotential height fields) and local climate variables
(e.g. temperature and precipitation at a location).
Statistical downscaling has a number of advantages over
the use of raw GCM output because of the stochasticity of
the downscaling model, ability to reproduce the unique
meteorological characteristics of the individual stations,
and finally being less data intensive than dynamical
methods such as nested or regional climate modelling
(Wilby et al., 1999).
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In the recent years, a great deal of research has gone
into the field of assessment of impacts of climate change
on hydrological processes. Yimer et al. (2009) provided
downscaled meteorological variables corresponding to
global emissions scenario (A2a) as input to the calibrated
and validated Hydrologic Engineering Center’s Hydro-
logic Modeling System (HEC-HMS) hydrological model
to simulate the corresponding future streamflow changes
in the Beles River in Ethiopia. The physically based
model HEC-HMS had been pointed out as being a
standard model in the private sector in the USA for the
design of drainage systems, quantifying the effect of land
use change in flooding, etc. (Singh and Woolhiser, 2002).
It is known to be a very adaptable software as it includes a
variety of model choices for each segment of the
hydrologic cycle. Jiang et al. (2007) in his study
investigated the potential impacts of anthropogenic
climate change on the water availability in the Dongjiang
basin, South China. Six monthly water balance models,
namely the Thornthwaite–Mather (TM), Vrije Universitet
Brussel (VUB), Xinanjiang (XAJ), Guo (GM), WatBal
(WM), and Schaake (SM) models are used, and their
capabilities in reproducing historical water balance
components and in predicting hydrological impacts of
alternative climates are compared. Jha et al. (2006) used the
Soil Water Assessment Tool (SWAT) to assess the impact
of simple sensitivity scenarios and a suite of climate change
scenarios on the hydrologic response of UpperMississippi
River Basin. Christensen et al. (2004) studied the
potential effects of climate change on the hydrology and
water resources of the Colorado River basin by comparing
simulated hydrologic and water resources scenarios
derived from downscaled transient temperature and
precipitation sequences extracted from PCM simulations.
The variable infiltration capacity (VIC) macroscale
hydrology model was used to produce corresponding
streamflow sequences. Yu and Wang (2009) investigated
the impact of climate change on rainfall, evapotranspir-
ation, and discharge in northern Taiwan. The daily rainfall
and temperature series obtained from delta change of
monthly temperature and precipitation from the grid cell
of GCMs were input into the calibrated HBV-based
hydrological model to project the hydrological variables.
The StatisticalDownScalingModel (SDSM), a regression-

based downscaling model, involves developing quan-
titative relationships between large-scale atmospheric
variables (predictors) and local surface variables (pre-
dictands). Chu et al. (2010), in his study, applied SDSM
to the Haihe River basin, China, and investigated its
applicability by downscaling mean temperature, pan
evaporation, and precipitation, which are important for
assessing the impact of climate change on water resource
management. Dibike and Coulibaly (2007) investigated
the potential of two hydrological models WatFlood and
HBV-96 for climate change impact studies by validating
them with meteorological inputs from both the historical
records and the SDSM downscaled outputs.
River Tunga–Bhadra is a tributary of Krishna river in

India. Very few studies on the hydrological modelling of
Copyright © 2012 John Wiley & Sons, Ltd.
Tunga–Bhadra river basin have been reported so far. The
study conducted in the Tunga–Bhadra basin by Rehana
and Mujumdar (2011) on the impacts of climate change
on water quality variables by using hypothetical climate
change scenarios reported a decreasing trend in the
streamflows in the historical period itself. All the
hypothetical climate change scenarios projected a deteri-
oration of water quality. It was found that there is a
significant decrease in dissolved oxygen levels due to the
impact of climate change on temperature and flows.
The present study aims at assessing the impacts of

potential future climatic changes on the hydrology of the
catchment area of Tunga–Bhadra River, lying upstream of
the Tungabhadra dam. Firstly, a hydrological model of the
study area is developed using the HEC-HMS version 3.4, a
physically based, semi-distributed model. Then, downscal-
ing of the meteorological variables obtained as output from
the Hadley Centre Coupled Model version 3 (HadCM3)
GCM for Special Report on Emissions Scenarios (SRES)
A2 and B2 scenarios is performed using SDSM 4.2, a
regression-based downscaling tool. The hydrological model
is validated for the baseline period with the downscaled
output of GCMs. The assessment of impacts of climate
change on the study area is carried out by incorporating the
future rainfall and temperature data downscaled using
SDSM 4.2 into the HEC-HMS 3.4 model. The changes in
simulated streamflows, evapotranspiration, and water
balance in the study area between current and future
scenarios are investigated.
STUDY AREA AND DATA SETS

Study area

The Tunga–Bhadra River is formed north of Shimoga,
in the state of Karnataka, India at an elevation of about
610 metres by the union of twin rivers, the Tunga and the
Bhadra. The major tributaries of the river are Bhadra,
Tunga, and Varada. The catchment area taken up in this
study lies in the upstream of the Tungabhadra dam and
spans over about 15 600 km2. A map of Tunga–Bhadra
basin is shown in Figure 1. The upper catchments are
characterized by undulating terrain and much higher
rainfall; the middle portion of the basin has much lower
rainfall, drought conditions, not so undulating terrain, and
mainly plains. The average slope of the basin is 6%. The
basin is dominated by clay loam soil with the soil
composition in the area: 42% clay loam, 34% clayey soil,
and 19% sandy clay soil. Farm land is the main land use/
land cover in the Tunga–Bhadra basin in Karnataka state
as of 2004–2005, accounting for more than 55% of the
surface. Other cultivable areas such as trees and groves,
fallow land, and cultivable waste add up to 12.5% of the
territory. Forests and natural vegetation cover 16% of the
area, and around 5% is used as permanent pastures.
Eleven percent of the territory is not available for
cultivation or for natural vegetation (Source: STRIVER
Task Summary Report No. 9.3, http://kvina.niva.no/striver/
Disseminationofresults/STRIVERReports/tabid/80/
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Figure 1. Map of Tunga–Bhadra Basin and gauge locations (source:
Google Earth (2010,2009))

Table I. Values of important parameters present in the
hydrological model

Sub-
basin

Area
(km2)

Type of
soil

Constant loss
rate (mm/h)

Impervious
percent

Crop
coefficient

1 3259 Nitisols
(loam+ sandy
clay loam)

0.6–3.4 13.77 1.15

2 883.3 Vertisols (light
clay + loam)

0.001–1.3 10.77 0.95

3 5662 Luvisols
(loam+ light
clay)

1.3–3.8 15.77 1.1

4 5860 Plinthosols
(loam)

1.3–3.8 10.77 1.0
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Default.aspx). Asmost part of the Tunga–Bhadra catchment
is located in the centre of the Peninsula, the basin receives an
average of 1024mmof rainfall in a year. The annual average
temperature reaches 26.7 �C. In general, humidity is high
during the monsoon period and comparatively low during
the post monsoon period. In summer, the weather is dry and
the humidity is low. The relative humidity in the basin
ranges from 17% to 92%.

Data used

The characteristics of the river basin, i.e. land use,
properties of soil, etc., are held constant throughout the
simulation period, and estimates of various soil parameters
are obtained from available literature on the study area. The
study area is divided into four sub-basins on the basis of the
soil cover and land use. The soil cover data obtained from
HWSDViewer 1.1 (2009) and the land use–land cover data
available from the case study by STRIVER (2009) is
combined to obtain estimates of various soil layer and
hydrological properties of the soil such as saturated
hydraulic conductivity, maximummoisture deficit, percent-
age of impervious space, basin lag, crop coefficient, and
dryness coefficient. The exact estimate of each of these
values for each sub-basin is obtained during calibration. The
various properties of these sub-basins are given in Table I.
Climatic data required in the study are daily precipitation,

maximum and minimum air temperature, and solar
radiation. Maximum and minimum temperatures are
obtained from the India Meteorological Department
(IMD). Precipitation records of five rain gauge stations
(Bhadravathi, Lakkavalli, Davanagere TO,Honnali TO, and
Harihar located in the Tunga–Bhadra basin) are obtained
from the IMD. Historical precipitation and temperature data
are available for the period 1960–2003 and 1969–2003,
respectively. The radiation data required by the hydrological
model are not available directly, so net radiation is
calculated using empirical equation. The relationships for
calculation of daily net radiation from solar radiation and
weather data by the United Nations Food and Agriculture
Copyright © 2012 John Wiley & Sons, Ltd.
Organization’s recommended method are used in the study.
The required inputs are the Julian date, latitude, and
maximum and minimum temperatures. The streamflow
data for the period 1972–2003 recorded at the Harlahalli
gauging site located near the outlet of the watershed is used
as the observed flows and is obtained from the Karnataka
State Water Resources Development Organization.
The observed large-scale atmospheric predictors for the

baseline period are derived from the National Centre for
Environmental Protection (NCEP) reanalysis data set. The
baseline period selected is 1961–1990, the standard World
Meteorological Organization period, as it incorporates the
natural variability of the climate (Xu et al., 2009). TheGCM
used in this study is the HadCM3, which is a coupled
atmosphere–ocean GCM developed at the Hadley Centre in
the UK. The outputs of HadCM3 A2 and B2 emissions
scenarios described in the SRES prepared by the Intergov-
ernmental Panel on Climate Change (IPCC) are used in this
study. The NCEP/NCAR reanalyses have a grid-spacing of
2.5� latitude by 2.5� longitude whereas the HadCM3 has a
resolution of 2.5� latitude by 3.75� longitude. So, the NCEP
reanalysis predictors have to be re-gridded to conform to the
grid-spacing of HadCM3, using the weighted average of
neighbouring grid-points. The standardization of predictors
is widely used prior to statistical downscaling to reduce
biases in the mean and variance of GCM atmospheric fields
relative to observations or reanalysis data. The re-gridded
and standardized predictors used as the SDSM model input
are obtained from the Canadian Climate Impacts Scenarios
Group website (http://www.cics.uvic.ca/scenarios/sdsm/
select.cgi). The predictor variables are supplied on a grid
basis, and the data for the particular grid are extracted for
three distinct periods, namely, the 2020s (2011–2040), the
2050s (2041–2070), and the 2080s (2071–2099).
HYDROLOGICALMODELLINGUSINGHEC-HMS 3.4

Model setup

The model used in this study, HEC-HMS 3.4, developed
by United States Army Corps of Engineers, is designed to
simulate the precipitation–runoff processes of dendritic
watershed systems. HEC-HMS model setup consists of a
Hydrol. Process. 27, 1572–1589 (2013)
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basin model, meteorologic model, control specifications,
and input data (time series data). The study area is divided
into four sub-basins, and they are characterized by different
soil type and land use pattern. The physical watershed is
represented in the basin model as in Figure 2.
For this particular study, deficit and constant loss

model is used to compute the losses from the watershed.
The deficit and constant loss model uses a single soil layer
to account for continuous changes in moisture content. It
is a quasi-continuous model and has to be used in
conjunction with a meteorological model that computes
evapotranspiration (US Army Corps of Engineers, 2008).
The parameters for this model include initial deficit,
maximum deficit, constant rate, and impervious percent-
age. In order to compute direct runoff from excess
precipitation, one should use a transform method. In this
study, SCS unit hydrograph model is used to transform
the flows. Soil Conservation Service Unit Hydrograph
(SCS UH) model is a parametric UH model, based upon
the averages of UH derived from gauged rainfall and
runoff for a large number of small agricultural watersheds
throughout the SCS. The input parameter for this method
is the basin lag, which is 0.6 times the time of
concentration of the flow. The constant monthly baseflow
method is used to account for the baseflows. It represents
base flow as a constant flow; this may vary monthly.
In the present study, the spatio-temporal precipitation

distribution is accomplished by the gauge weight method.
This method uses separate parameter data for each gauge
used to compute precipitation and also uses separate
parameter data for each sub-basin in the meteorologic
model. The meteorologic model uses Priestley–Taylor
evapotranspiration method as input for continuous
hydrological simulation. The data requirements are
limited to the maximum and minimum temperature, solar
radiation, crop coefficients, and dryness coefficient. The
model assumes that no evapotranspiration losses take
place in the basin during periods of precipitation. The
control specifications model specifies the start and end of
the computation period and the computation time interval.
Figure 2. Basin model in the HEC-HMS 3.4 hydrological mode

Copyright © 2012 John Wiley & Sons, Ltd.
The computation time interval is daily. Time windows are
created for the calibration and validation periods.

Model calibration and validation

Split sample procedure is followed in the model testing.
Twenty years (1973–1992) of observed streamflow data are
used for calibrating the hydrological model and remaining
10 years data (1993–2002) for validation. The character-
istics of the river basin, i.e. land use, properties of soil, etc.,
are held constant throughout the simulation period. The
constant loss rate and maximum deficit parameters, needed
for the deficit and constant loss method, and the basin lag
parameter in SCS unit hydrograph transform method are
taken into consideration in the simulation. The peak
weighted root mean square function is chosen as the
objective function, and the Nelder and Mead algorithm is
used to minimize the objective function.

Performance evaluation of the model

The statistics of the flows such as mean, standard
deviation, normalized root mean squared error NRMSE,
and covariance of root mean squared error CVRMSE are
compared. The model performance efficiency criteria such
as coefficient of determination R2, Nash–Sutcliffe model
efficiency E (Nash and Sutcliffe, 1970), and percent
deviation D are used to evaluate the model simulations
during the calibration and validation periods. The R2 value
indicates the correlation between the observed and
simulated values, and E measures how well the plot of
the observed against the simulated flows fits the 1 : 1 line.
The R2 coefficient is calculated using Equation 1.

R2 ¼
P

Qobs ��Qobs

� �
� Qsim ��Qsim

� �

√
P

Qobs ��Qobs

� �2
� Qsim ��Qsim

� �2
� � (1)

where Qsim is the simulated value, Qobs is the observed
value, �Qsim is the average simulated value, and �Qobs is the
average observed value. The range of values for R2 is 1.0
(best) to 0.0 (unacceptable).
l showing the four sub-basins and the outlet in the study area

Hydrol. Process. 27, 1572–1589 (2013)
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The E value is calculated using Equation 2. If the E
value is less than or close to zero, the model simulation is
unacceptable. The best value is 1.

E ¼ 1�
P

Qobs � Qsimð Þ2P
Qobs ��Qobs

� �2 (2)

The percent deviation of streamflows (D) over a
specified period with total days calculated from measured
and simulated values of the quantity in each model time
step is determined using Equation 3.

D ¼ 100� Qobs � Qsim

Qobs
(3)

A value close to 0% is best for D. A negative value
indicates model overestimation, and a positive value
indicates model underestimation.
STATISTICAL DOWNSCALING USING SDSM 4.2

Statistical downscaling methods establish empirical
relationships between GCM-resolution climate variables
and local climate in a simplified form as in Equation 4:

R ¼ F Lð Þ (4)

where R is the predictand (a local climate variable), L is
the predictor (a set of large-scale climate variables), and
F a deterministic/stochastic function conditioned by L and
is estimated empirically from historical observations.
The present study used SDSM 4.2 to downscale the

maximum and minimum temperature and daily mean
areal precipitation in the four sub-basins of the study area.
Quality Control check in SDSM is performed on the
maximum and minimum temperature data and mean areal
precipitation data of all the sub-basins in the basin to
identify errors in the data records, specifically missing
data if any, using codes, and outliers prior to model
calibration. The predictor variable, mean temperature
lagged by 1 day (t_lag), is created using Transform
feature. As the distribution of precipitation is skewed, a
fourth root transformation is applied to the original series
to convert it to the normal distribution and then used in
the regression analysis. The screening of predictors is
performed using the results of seasonal correlation
analysis, partial correlation analysis, and scatter plots.
The model structure is specified as monthly and the
downscaling process as unconditional or conditional.
Minimum and maximum temperatures are modelled as
unconditional processes. Precipitation is modelled as a
conditional process in which the local precipitation
amount is correlated with the occurrence of wet days.
Auto-regression option is also selected in order to include
an auto-regressive term in the regression equations for
downscaling temperatures. The correlation analysis is
used to investigate inter-variable correlations for specified
sub-periods (annual, seasonal, or monthly). On the basis
Copyright © 2012 John Wiley & Sons, Ltd.
of the correlation values and scatter plots, the predictors
selected suitable for downscaling the temperatures and
daily precipitation values for this case study are listed in
the Table II.
The Calibrate Model takes up each of the predictand

and a set of probable predictors and computes the
parameters of multiple regression equations by using an
optimization algorithm (ordinary least squares). Monthly
model type is selected in which different model
parameters are derived for each month. From the 30 years
of data representing current climate (1961–1990), the
11 years of data (1969–1979) are used for calibrating the
regression model whereas 10 years of data (1981–1990)
are used to validate the model. The summary screen
reports the percentage of explained variance, the standard
error (SE) for the model, and Durbin–Watson statistic
for each month. Once the explained variance and SE
values obtained are found satisfactory, the regression
model is finalized.
About five ensemble members of each variable for the

validation period are synthesized using the Weather
generator. Thus, verification of the calibrated models
(using independent data) is carried out. SDSM 4.2
facilitates comparison of downscaled scenarios and
observed climate data with the Summary Statistics and
Frequency Analysis screens. Statistical analysis of both
observed and synthetic data are performed using the
variable mean, maximum, minimum, variance, percent
wet-days, and dry-day spell lengths, etc. computed on
monthly, seasonal, or annual basis. The Compare Results
screen enables us to plot monthly statistics produced by
the Summary Statistics screen. During the calibration and
the validation of downscaling models for precipitation,
the mean daily precipitation and daily precipitation
variability for each month, monthly average percent of
wet days, and dry-spell lengths are used to evaluate the
performance of model. For the evaluation of the
performance of the regression models for temperature,
mean values of observed and NCEP simulated data
are compared.
The Scenario Generator operation produces ensembles

of downscaled synthetic daily weather series given
atmospheric predictor variables supplied by the GCM
HadCM3 (either for present or future climate experiments).
About five ensemble members of each climate variable are
downscaled for the A2 and B2 scenarios of HadCM3model
by using the corresponding set of predictor variables. As
HadCM3 has year lengths of 360 days, the downscaled
variables will have each year of 360 days. The output from
SDSM has to be processed outside the model to convert it
into 365 days in a year form, so that it is ready to be input
into the hydrological model. The statistical downscaling
results obtained for the future are analysed and projections
for future are made. The maximum and minimum monthly
temperature and mean areal daily rainfall for the baseline
and future time slices (2020s, 2050s, and 2080s) are
computed and compared. The projections are made for
monthly rainfall, percentage of wet days, and dry-spell
length also.
Hydrol. Process. 27, 1572–1589 (2013)



Table II. Predictands and their selected NCEP predictors

T1 (sub-basin 1) T2 (sub-basins 2 and 3) T3 (sub-basin 4) R1 (sub 1) R2 (sub 2) R3 (sub 3) R4 (sub 4)

Max Min Max Min Max Min

mslp p_z mslp mslp p500 p_u p_f mslp mslp mslp
p_f p5_v p5_f p5zh p850 p500 p_zh p_f p_zh p_f
p_u p500 p8_v p8_f tlag r500 p8_f p_zh p8_f p_zh
p_zh p8zh p850 p8_u rhum r500 p8_f p8th p8_u
p500 rhum shum p8_z shum r850 r850 r500 p850
p8_f shum tlag p8zh tlag rhum rhum r850 r500
p850 tlag rhum shum shum rhum r850
p8zh shum shum rhum
tlag tlag

Note:
• Predictands used in the study:
1. Maximum and minimum temperatures in the four sub-basins of the study area, i.e. T1-max and T1-min (in sub-basin 1), T2-max and T2-min

(in sub-basins 2 and 3), T3-max and T3-min (in sub-basin 4).
2. Mean areal precipitation at daily time step in the four sub-basins of the study area: precipitationR1,R2,R3, andR4 in sub-basin 1, sub-basin 2, sub-basin
3, and sub-basin 4, respectively.

• NCEP predictors provided by SDSM:
1. mean sea level pressure (mslp)
2. 2m near surface temperature (temp)
3. 2m near surface temperature lagged 1 day (t_lag)
4. 500 hPa geopotential heights (p500)
5. 850 hPa geopotential heights (p850)
6. near surface-specific humidity (shum)
7. specific humidity
(i) at 500 hPa height (s500)
(ii) at 850 hPa height (s850)

8. near surface relative humidity (rhum)
9. relative humidity
(i) at 500 hPa height (r500)
(ii) at 850 hPa height (r850)

10. geostrophic air flow velocity
(i) at the surface (p_f)
(ii) at 850 hPa height (p8_f)
(iii) at 500 hPa height (p5_f)

11. vorticity
(i) at the surface (p_z)
(ii) at 850 hPa height (p8_z)
(iii) at 500 hPa height (p5_z)

12. zonal velocity component
(i) at the surface (p_u)
(ii) at 850 hPa height (p8_u)
(iii) at 500 hPa height (p5_u)

13. meridional velocity component
(i) at the surface (p_v)
(ii) at 850 hPa height (p8_v)
(iii) at 500 hPa height (p5_v)

14. divergence
(i) at the surface (p_zh)
(ii) at 850 hPa height (p8_zh)
(iii) at 500 hPa height (p5_zh)
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ASSESSMENT OF IMPACTS OF CLIMATE CHANGE
USING THE HYDROLOGICAL MODEL

The comparison of water balance, evapotranspiration, and
streamflow of present and future conditions is performed
in order to quantify the changes in hydrology of the
watershed due to future climate change. This is achieved
by simulating the future hydrology of the basin by using
the hydrological model.
Even though the hydrological model used in the study

is found capable of reproducing the historical streamflow
record reasonably well, its application to predict the
hydrology of streams in future climate depends on its
ability to model the current scenarios (Dibike and
Copyright © 2012 John Wiley & Sons, Ltd.
Coulibaly, 2007). The downscaled baseline temperature
and precipitation obtained from SDSM is input into the
model to simulate the baseline streamflows. The average
monthly observed streamflows, simulated streamflows
using observed inputs, and baseline streamflows for the
period 1973–1990 are compared to validate the model.
The validated hydrological model is used to generate the
streamflows at the outlet and potential evapotranspiration
(PET) in the four sub-basins of the study area for the
current as well as future periods by using the downscaled
temperature and precipitation data corresponding to the
A2 and B2 scenarios developed by the HadCM3. No
change in soil cover or land use pattern is assumed for the
future scenarios. This makes it sure that the projections
Hydrol. Process. 27, 1572–1589 (2013)



Table III. Statistics of the observed and simulated daily flows

Statistic

Streamflows (cumecs)

Calibration period Validation period
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for future are entirely dependent on the climate change
scenarios. The impacts of climate change on the stream-
flows, PET, and water balance of the study area are then
investigated.
(cumecs) (1973–92) (1993–02)

Observed Simulated Observed Simulated

Maximum 7358.0 7402.0 5842.0 3238.0
Mean 233.1 233.0 225.8 221.3
SD 412.8 370.7 416.0 327.2

SD, standard deviation.
RESULTS AND DISCUSSIONS

Hydrological modelling

Calibration and validation of HEC-HMS. The calibration
of HEC-HMS 3.4 model for the study area is carried out
by comparing the simulated daily streamflows with the
observed flow at the outlet of the basin. As a large number
of parameters are involved, on the basis of a sensitivity
analysis, three parameters, namely the hydraulic conduct-
ivity of the soil (mm/h), maximum moisture deficit (mm),
and time lag (min), in each sub-basin are identified for
calibrating the model. The statistics of the observed and
HEC-HMS 3.4 simulated daily flows during calibration
and validation periods are shown in Table III. The mean
values of daily flows are simulated very well by the model
during both periods. Peak flow is underestimated during
the validation period.
The plots of observed and simulated daily flows as well

as monthly flows are given in Figures 3 and 4. It shows
daily flows are well simulated in some of the calibration
years, as in 1973, 1977, and 1988, but most of the high
flows in the JJAS (June–July–August–September) period
are underpredicted by the model. Underprediction of
high flows is present in almost all the validation years too.
This discrepancy has already been observed by previous
Figure 3. Comparison plots of observed and simulated (a) daily, (b) monthly
calibration period

Copyright © 2012 John Wiley & Sons, Ltd.
studies of hydrological modelling (for example, Yimer,
et al., 2009). The results of an investigation into the
extent and magnitude of underprediction of high flows
(that is, the flows in the months of June to September
or JJAS period) is given in Table IV. The results
indicate that during calibration and validation periods,
33.5% and 30.4% of the high flows, respectively, are
underestimated, that is, the simulated high flows are
below 85% of the magnitude of the observed high
flows. This addresses the uncertainty involved in the
simulations of the model. The various performance
evaluation measures computed for the daily and
monthly streamflows in the calibration and validation
periods are listed in the Table V. The R2 and E values
for the calibration period are 0.72 and 0.48, respect-
ively, but slightly improved during the validation
period for daily flows. Value of D of less than 2%
indicates a negligible underestimation of total flows.
, and (c) average monthly streamflows at the outlet of the basin during the
(1973–1992)
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Figure 4. Comparison plots of observed and simulated (a) daily, (b) monthly, and (c) average monthly streamflows at the outlet of the basin during the
validation period (1993–2002)

Table IV. Percentage and magnitude of underprediction in high
flows

Magnitude of observed flow (%) 75 80 85 90 95

Percent of
underpredicted flows

Calibration 26.2 29.9 33.5 37.4 40.4
Validation 24.6 27.4 30.4 33.3 35.8

Table V. Performance assessment of HEC-HMS 3.4 model during
calibration and validation

Daily streamflows Monthly streamflows

Test
statistic

Calibration
period

(1973–1992)

Validation
period

(1993–2002)

Calibration
period

(1973–1992)

Validation
period

(1993–2002)

R2 0.72 0.77 0.87 0.88
E 0.48 0.59 0.75 0.78
D (%) 0.07 1.96 0.07 1.96
NRMSE 0.04 0.05 0.09 0.07
CVRMSE 1.28 1.19 0.67 0.67

NRMSE, normalized root mean squared error; CVRMSE, covariance of
root mean squared error.
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Statistical downscaling of temperature and precipitation

Calibration and validation of SDSM. The explained
variance E, coefficient of determination R2 and Standard
Error (SE) for maximum and minimum air temperature,
and daily precipitation at the four sub-basins in the study
area given in Table VI show that the model is capable of
explaining more than about 66% and 60% of the variance
in maximum and minimum air temperature, respectively,
whereas only about 20% of the variance in daily
precipitation can be explained by it. The plot in Figure 5
shows that there is good agreement between the observed
and NCEP simulated maximum and minimum tempera-
tures throughout the year during the validation period.
The low explained variance and R2 obtained for daily

precipitation exposes the difficulty of downscaling local
precipitation series from regional scale predictor vari-
ables. Table VII compares the statistical regression model
estimates of daily precipitation for the validation period
with the observed series in terms of the bias, that is, the
difference between the NCEP downscaled value and
the observed value of the statistic. It is evident that the
downscaling model produces lower estimates of percent
of wet days and dry-spell length compared with those
recorded in the study area. However, the downscaling
Hydrol. Process. 27, 1572–1589 (2013)



Table VI. Explained variance (E), R2, and SE for precipitation, and maximum and minimum temperatures during the calibration period
(1969–1979)

Sub-
basin

Precipitation Max. temperature Min. temperature

E (%) R2 SE (mm) E (%) R2 SE (mm) E (%) R2 SE (mm)

1 18.5 0.26 0.3 68.1 0.83 0.39 60.6 0.82 0.35
2 20.6 0.18 0.37 70.4 0.87 0.42 64 0.84 0.35
3 21.1 0.25 0.31 70.4 0.87 0.42 64 0.84 0.35
4 21.3 0.30 0.3 66.9 0.82 0.4 57.2 0.81 0.32
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model yielded higher estimates of daily mean precipita-
tion compared with the observed values. As the E statistic
or bias alone cannot evaluate the performance of the
precipitation regression model, during the calibration and
validation of precipitation downscaling models, the average
daily precipitation, average monthly precipitation, average
monthly percent of wet days, average monthly dry-spell
Figure 5. Comparison plots of observed and NCEP simulated (using
SDSM) average daily (a) maximum and (b) minimum temperatures in sub-

basins 2 and 3 during the validation period (1981–1990)

Table VII. Bias between the statistics of observed and NCEP simu

Sub-
basin

Mean (mm/day) Variance (mm2)

Obs. NCEP Bias Obs. NCEP Bias

1 3.53 4.95 1.42 26.91 19.37 �7.54
2 4.06 4.12 0.07 44.54 38.77 �5.77
3 2.66 2.91 0.24 19.05 15.74 �3.32
4 4.17 4.46 0.29 34.67 28.60 �6.07

Copyright © 2012 John Wiley & Sons, Ltd.
lengths, and monthly variance in precipitation can be also
used as performance criteria.
The results of precipitation downscaling using SDSM

are found to be poor. Hence, the support vector machine
(SVM) approach is adopted to downscale the mean areal
precipitation of the sub-basins. SVM has proved to be a
popular method to downscale precipitation, and the
details can be found in Tripathi et al. (2006), Anandhi
et al. (2008), Ghosh (2010), and Raje and Mujumdar
(2011). The least square SVM (LS-SVM) has been used
in the present study with a radial basis function (RBF) as
kernel. The linear correlation coefficient or R-value
obtained is used as an index to assess the performance
of the LS-SVM with RBF kernel model and for fixing the
parameters, RBF kernel width (s), and the penalty
parameter (C). The final values used in the model are
s= 500 and C = 100. In SVM downscaling method, the
first 12 principal components of the NCEP climate
variables (surface-specific humidity, mean sea level
pressure, surface air temperature, precipitation flux,
surface U-wind and surface V-wind, relative humidity,
geopotential height) are directly used in fitting the
lated precipitation values during validation period (1981–1990)

Percent of wet days Dry-spell length (days)

Obs. NCEP Bias Obs. NCEP Bias

60.37 40.65 �19.7 5 5 0
45.94 39.28 �6.7 6 5 �1
60.29 44.68 �15.6 6 4 �2
56.19 41.28 �14.9 6 5 �1

Figure 6. Comparison plots of observed and NCEP simulated (using SVM)
average monthly precipitation during the testing period (1981–1990)
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Table VIII. Projected changes in maximum and minimum daily
temperatures in the study area

Sub-
basin

Change in maximum
temperature (�C)

Change in minimum
temperature (�C)

2020s 2050s 2080s 2020s 2050s 2080s

A2 B2 A2 B2 A2 B2 A2 B2 A2 B2 A2 B2

1 0.1 0.1 0.3 0.2 0.4 0.3 0.2 0.2 0.4 0.3 0.5 0.4
2 1.0 1.1 2.1 1.7 3.4 2.5 0.1 0.2 0.3 0.3 0.4 0.4
3 1.0 1.1 2.1 1.7 3.4 2.5 0.1 0.2 0.2 0.3 0.3 0.4
4 0.2 0.2 0.4 0.3 0.6 0.4 0.1 0.2 0.2 0.3 0.3 0.3
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regression equation. In this study, NCEP data and
observed monthly mean areal precipitation data of sub-
basin 4 for a period of 1961 to 1980 are used to calibrate
the model, and the data for the period of 1981 to 1990 are
used for validation.
During training (calibration) and testing (validation)

periods, the coefficient of determination is obtained as
0.99 and 0.81, respectively, with this data-driven
technique. The SVM method thus showed improved
performance compared with the SDSM. Figure 6 shows
the comparison of observed and NCEP simulated monthly
mean areal precipitation in sub-basin 4 obtained during
testing of the SVM.

Projections of temperature based on downscaling. The
increase in maximum and minimum daily temperature in
the future periods under the two scenarios in all sub-
basins is shown in Table VIII. The maximum daily
temperature in sub-basins 2 and 3 under A2 scenario
increased the most, i.e. by 1, 2.1, and 3.4 �C respectively,
in the 2020s, 2050s, and 2080s.
Plots showing the projected diurnal variations in

temperature in the four sub-basins of the study area for
the future periods under the A2 and B2 scenarios are
shown in Figures 7 and 8, respectively. The diurnal range
decreased in the winter months and increased in months
(a)

(c

Figure 7. Plot showing observed and projected average diurnal variations in

Copyright © 2012 John Wiley & Sons, Ltd.
of July and August in sub-basins 1 and 4 under both
scenarios, whereas in sub-basin 2, there is a considerable
increase in diurnal range throughout the year.

Projections of daily mean areal precipitation based on
downscaling. Figures 9 and 10 show the projections of
average monthly precipitation in the four sub-basins in the
studyareabySDSM, for thebaselineand futureperiodsunder
the A2 and B2 scenarios, respectively. The precipitation in
the JJAS period in all sub-basins increased more under the
A2 scenario than under B2. In the 2080s, in sub-basin 2, 75%
and 58% increase in JJAS precipitation are projected under
the A2 and B2 scenarios, respectively. The percent increase
(b)

)

temperature in the four sub-basins of the study area under the A2 scenario

Hydrol. Process. 27, 1572–1589 (2013)
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(c)

Figure 8. Plot showing observed and projected average diurnal variations in temperature in the four sub-basins of the study area under the B2 scenario
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in sub-basin 4 is projected to be 15% in the 2020s, 28% in
the 2050s, and 35% in the 2080s under the A2 scenario.
When the future projections for precipitation obtained

from SVM downscaling are examined, increasing trends
are observed with the A2 scenario. There is a marked
increase in average monthly precipitation in most of
the months with SVM as can be seen from the plots for
sub-basin 4 under the A2 scenario in Figure 11. The
difference between the projected monthly precipitation
modelled by SDSM and SVM is very small. However, the
future projections of monthly precipitation predicted is
more with SDSM downscaling (Figure 9(d)) compared
with SVM (Figure 11). For comparing the future
projections obtained from the two downscaling methods,
a plot of changes projected in the average monthly
precipitation of sub-basin 4 under the A2 scenario is
given in Figure 12. It is seen that for the months April,
June, September, and November, both methods project an
increase in precipitation, of varying amounts.

Validation of hydrological model with downscaled climate
data

Flows are generated by giving both observed and
downscaled (for the A2 and B2 scenarios of HadCM3)
precipitation and temperature data for the current period
Copyright © 2012 John Wiley & Sons, Ltd.
1973–1990 as inputs to the HEC-HMS 3.4 model of the
study area. Likewise, the PET values are also simulated.
Some statistical properties of the simulated streamflows
during the period 1973–1990 corresponding to both
observed and downscaled precipitation and temperature
inputs given in Table IX show that the hydrological
model with downscaled inputs mostly overestimates the
mean streamflows in the basin whereas the model with
observed inputs slightly underestimated the mean flows.
However, they reproduced the variability better than
observed data-drivenmodel. The statistics of PET simulated
in one of the sub-basins by using the observed inputs and the
HadCM3 inputs for the period 1973–1990 is given in
Table X. The mean, median, and standard deviation values
are all simulated very well. It can be concluded on the basis
of the above observations that the hydrological model used
in the study effectively demonstrates the effect of the climate
pattern found in the downscaled data.

Impacts of climate change on the hydrology of the basin

Changes in streamflows. It is seen that the A2 and B2
scenarios may produce a wide range of changes in the
hydrology of the basin. It is clear from the box plots of
predicted daily streamflows in Figure 13 for the three
periods that streamflows are increasing in the future for
Hydrol. Process. 27, 1572–1589 (2013)
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Figure 9. (a–d) Projections of average monthly precipitation in four sub-basins of the study area for the current and future periods under the A2 scenario
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both scenarios. All periods under the A2 scenario showed
an increase, of about 6.8 cumecs in the 2020s, 31.8
cumecs in the 2050s, and 74.2 cumecs in the 2080s in the
mean flows. The mean flows in the baseline period of the
B2 scenario was 124 cumecs, which is projected to 145.7
cumecs in the 2050s and 169 cumecs in the 2080s.
Table XI shows the projected percent change in the
average monthly streamflows in future periods under the
A2 and B2 scenarios with respect to the baseline flows.
The projected streamflows show a decline in the months
December to March in all the three future periods under
the A2 and B2 scenarios. There is an increasing tendency
in the flows of April in the 2080s under the A2 scenario.
Streamflows in May, June, July, and September also
showed increasing trend in all three periods under both
scenarios, although in August the trend is a decrease. The
magnitude of increase projected is higher in the A2
scenario compared with B2 scenario. The average annual
streamflows project an increase of 4%, 17.1%, and 43.9%,
respectively, in the 2020s, 2050s, and 2080s under the A2
scenario and an increase of 5.4% and 18.5%, respectively,
in the 2050s and 2080s under the B2 scenario, with respect
to the baseline flows. The average monthly streamflows
simulated under the A2 and B2 scenarios for the baseline
and the three future periods are shown in Figure 14(a and
b). The flows in the months of May, June, July, and
September are projected to increase under the A2 and B2
Copyright © 2012 John Wiley & Sons, Ltd.
scenarios. The flows in the months of August and October
projected to decrease under both scenarios. The changes
predicted in the flows during summer (March, April) and
winter (November–February) months are negligible, as
already the flows are very low during these periods.

Changes in potential evapotranspiration. It is observed
from the box plots of projected daily PET values under
the A2 scenario in Figure 15 that in sub-basins 1 and 4,
the average daily PET slightly reduced compared with the
baseline value, whereas in sub-basins 2 and 3, there is a
gradual increase in the average values in the future period
under the A2 scenario. Similar trends are observed in the
projected PET values under the B2 scenario from the box
plots in Figure 16.
The projected changes (in percentage) are shown in the

plots in Figure 17. The average daily PET value projected
in sub-basin 1 decreases by 3.7% in the 2020s, 3% in the
2050s, and 3.6% in the 2080s under the A2 scenario. The
average daily PET value projected in sub-basin 2 under
the B2 scenario increases by 18% in the 2020s, 22% in
the 2050s, and 29% in the 2080s. The average daily PET
value projected in sub-basin 2 under the A2 scenario
increases by 1.5% in the 2020s and 2050s and 16.7% in
the 2080s. The average monthly PET values in sub-basins
2 and 3 are also projected to increase in the future periods
under the A2 and B2 scenarios.
Hydrol. Process. 27, 1572–1589 (2013)
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Figure 10. (a–d) Projections of average monthly precipitation in four sub-basins of the study area for the current and future periods under the B2 scenario

Figure 11. Projections of average monthly precipitation in sub-basin 4 for
the current and future periods under the A2 scenario by SVM
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Changes in water balance. The projected percentage
change in annual actual evapotranspiration (AET) losses
in the future periods under both scenarios is listed in
Table XII. Under the A2 climate scenario, the AET losses
in the study area are projected to increase in sub-basins 1,
2, and 3, in the 2050s and 2080s. However, under the B2
scenario, in sub-basin 3, the AET values are projected to
decrease. In sub-basin 4, under both scenarios, AET
losses are predicted to decrease in the future periods. The
future trend in the contribution of annual precipitation to
various water balance components in the basin such as
Copyright © 2012 John Wiley & Sons, Ltd.
excess rainfall, AET, and percolation (infiltration) are
shown in the plots of Figure 18. The contribution of
precipitation to AET loss is projected to decrease in all
sub-basins under the A2 as well as B2 scenario. In sub-
basins 1 and 3, the contribution to infiltration losses is
expected to increase under both scenarios, whereas in
sub-basins 2 and 4, this component is negligible. Whereas
the percentage of rain contributing to direct runoff
decreases in sub-basin 1 under both scenarios, in sub-
basin 3, a small increase is projected. In sub-basins 2 and
4, there may be increase in the surface runoff component.
The average annual water balance of each of the four sub-
basins has been projected to change in different ways, so
an attempt to generalize the nature of change in water
balance of the region is performed. The likely changes in
water balance components aggregated for the study area
under the two scenarios compared with the baseline
period is also computed and listed in Table XIII. About
28% increase in future precipitation simulated by the
HadCM3 A2 scenario in the 2080s projected to produce
46% increase in surface runoff, a 5% decrease in AET,
and an 88% increase in percolation, in the study area on
an annual basis. Similarly, a 50% increase in future
precipitation simulated by the HadCM3 B2 scenario in
the 2080s predicted to lead to 103% increase in surface
runoff, a 6% decrease in actual evapotranspiration, and a
117% increase in percolation.
Hydrol. Process. 27, 1572–1589 (2013)



Figure 12. Comparison of percent change in average monthly precipitation of sub-basin 4 projected by SVM and SDSM

Table IX. Statistics of the observed and simulated (with HadCM3
downscaled A2, B2, and observed inputs) discharges at the outlet

of the basin

Statistic
(cumecs) Baseline_A2 Baseline_B2

Historic
observed Observed

Mean 273.0 279.4 219.8 225.3
SD 379.9 383.2 343.2 386.5
Minimum 24.9 25.0 24.8 2.4
Maximum 3575.0 2930.4 7402.2 4562.0

SD, standard deviation.

Table X. Statistics of the simulated (with HadCM3 downscaled
A2, B2, and observed inputs) potential evapotranspiration (PET)

in sub-basin 1

Statistic (mm) Observed Baseline_A2 Baseline_B2

Mean 5.2 5.16 5.18
Median 4.87 4.88 4.89
SD 0.97 0.94 0.95

SD, standard deviation.

Table XI. Projected percent change in monthly streamflows at the
outlet of the basin under different scenarios

Month

A2 B2

2020s 2050s 2080s 2020s 2050s 2080s

Jan �32.3 �34.0 �31.0 �31.8 �33.4 �34.4
Feb �55.0 �55.2 �55.0 �56.3 �56.1 �55.2
Mar �56.6 �56.2 �55.3 �56.3 �55.8 �54.8
Apr �19.9 �20.4 87.9 �26.2 �12.2 �8.3
May 36.0 164.4 776.2 15.7 78.4 272.6
Jun 45.3 208.7 358.0 32.5 104.4 339.9
Jul 12.2 28.7 30.4 11.9 21.2 27.4
Aug �18.3 �20.1 �22.3 �16.7 �19.0 �18.8
Sep 29.5 59.6 94.5 15.2 22.2 45.3
Oct �1.0 �10.3 �1.8 �14.0 �13.1 �20.6
Nov �4.6 �15.0 �2.7 �0.7 3.6 �11.6
Dec �27.7 �33.7 �10.2 �22.3 �21.3 �21.4
Annual 4.0 17.1 43.9 �1.3 5.4 18.5
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CONCLUSIONS

The present case study aimed to create a hydrological
model of the catchment area of River Tunga-Bhadra,
lying upstream of the Tungabhadra dam, and assess the
impacts of climate change on the hydrology of the basin.
Figure 13. Box plots of baseline and future daily stream

Copyright © 2012 John Wiley & Sons, Ltd.
The hydrology of the basin is modelled quite well by the
HEC-HMS 3.4 hydrological model except for the high
flows. Under-prediction of high flows is an inherent
problem seen in hydrological modelling of the basin in
the case study. This is due to the lack of extreme event
modelling capability of the hydrological model. The
monthly flows are better simulated than daily flows.
The climate variables obtained as output from a coarser

resolution GCM, HadCM3 model is then downscaled to
obtain finer resolution inputs required by the hydrological
flows simulated under the (a) A2 and (b) B2 scenarios

Hydrol. Process. 27, 1572–1589 (2013)
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Figure 14. Comparison between the baseline and projected average monthly flows in the various time periods under the (a) A2 and (b) B2 scenarios
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model using SDSM 4.2. The statistical downscaling
procedure performed well for the maximum and mini-
mum temperature but poorly for the daily mean areal
precipitation. The low explained variance and R2 value
for daily precipitation highlighted the difficulty of
downscaling local daily precipitation series from regional
scale predictor variables. The inherent statistical properties
of the precipitation data make it difficult to set up a good
downscaling model. The temperature projections for the
future indicate an increase in the maximum and minimum
daily temperature compared with the baseline period. There
is a larger increase in maximum temperature under the A2
scenario than B2. The daily precipitation values of summer
(a)

(c)

Figure 15. Box plots showing projected daily PET values in the four

Copyright © 2012 John Wiley & Sons, Ltd.
months are projected to increase in sub-basin 4 in the future
under both scenarios. The winter months except January are
however projected to change less in terms of daily
precipitation. The precipitation in the JJAS period in all
sub-basins increased more under the A2 scenario than under
the B2 scenario. The increase amounted to about 50% in the
2050s and 75% in the 2080s under the A2 scenario in sub-
basin 2. Another method, SVM, is used to downscale the
precipitation values to examine the performance and to
compare with the present results. SVM performed well
compared with SDSM in terms of R2 value. However, the
hydrological model HEC-HMS is run for the future with
SDSM downscaled outputs despite its poor performance as
(b)

(d)

sub-basins in the baseline and future periods under the A2 scenario
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Figure 16. Box plots showing projected daily PET values in the four sub-basins in the baseline and future periods under the B2 scenario
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the results of SDSM do not deviate much from SVM
downscaling results.
The performance of the hydrological model in climate

change impacts assessment is looked into by comparing the
baseline flows under both scenarios, with the observed
flows. The validated model when provided with the future
climate variables, i.e. temperature and daily rainfall values
as inputs, generated the future streamflows at the outlet of
the basin. The impacts of climate change on the hydrology
of the study area are then investigated by comparing
the flows, PET, and water balance during the baseline
(1961–90) and the future periods (2020s, 2050s, and 2080s).
Streamflows in May, June, July, and September

increased in all three periods in both scenarios, although
Figure 17. Projected changes in the average daily PET values in the futur

Copyright © 2012 John Wiley & Sons, Ltd.
in August, a decreasing trend is observed. The magnitude
of increase in flows is observed to be more under the A2
scenario than B2. The average annual streamflows record
an increase of 4%, 17.1%, and 43.9%, respectively, in the
2020s, 2050s, and 2080s under the A2 scenario and an
increase of 5.4% and 18.5%, respectively, in the 2050s
and 2080s under the B2 scenario. The projected PET
values in sub-basins 1 and 4 show a slight reduction
compared with the baseline values. The average monthly
PET values in sub-basins 2 and 3 are projected to increase
in the future periods under the A2 and B2 scenarios. The
average daily PET value projected in sub-basin 2 under
the A2 scenario increases by 1.5% in the 2020s and 2050s
and 16.7% in the 2080s. The increase observed is more
e periods under the (a) A2 and (b) B2 scenarios in the four sub-basins
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Table XII. Projected percent change in AET component from
baseline to future scenarios in the four sub-basins

Sub-
basin

2020s 2050s 2080s

A2 B2 A2 B2 A2 B2

1 8.3 10.5 7.9 3.1 4.6 7.2
2 8.7 7.6 10.1 8.6 17.9 24.7
3 �2.2 �5.7 0.5 �5.5 1.7 �2.4
4 0.4 �2.7 �1.5 �8.9 �5.2 �12

Table XIII. Projected percent change in overall water balance
components of the study area from baseline to future scenarios

Component
A2 B2

2020s 2050s 2080s 2020s 2050s 2080s

Precipitation 12.4 14.8 27.7 15.0 23.9 50.6
Excess rainfall 18.8 26.6 46.3 37.1 52.9 103.9
AET �5.5 �5.2 �4.7 �7.5 �10.4 �5.9
Percolation 53.7 50.9 87.6 40.4 71.2 117.4
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under the B2 scenario in the two sub-basins 2 and 3.
Water balance studies of all sub-basins are carried out for
the future periods under the A2 and B2 scenarios. The
trends projected for various components differ from sub-
basin to sub-basin. Therefore, the results of four sub-
basins are aggregated to represent the water balance of
the study area as a whole. A 28% increase in future
precipitation simulated by the HadCM3 A2 scenario in
the 2080s produced a 46% increase in direct runoff, a 5%
decrease in AET, and a 88% increase in infiltration, in the
study area on an annual basis. Similarly, 50% increase in
future precipitation simulated by the HadCM3 B2
scenario in the 2080s produced a 103% increase in direct
runoff, a 6% decrease in AET, and a 117% increase in
infiltration.
The possible changes projected by the study provide a

useful input to effective planning of water resources of
(a)

(c)

Figure 18. Plots showing projected percentage of contribution of annual preci
area under the A2

Copyright © 2012 John Wiley & Sons, Ltd.
the study area. The study is intended to cater to the
research on climate impact studies in developing
countries, using freely available and less data-intensive
models. In short, the study aimed at creating awareness,
as to how the possible climate change can affect the water
resources at local level and the need for modifying the
existing water infrastructure in the region to sustain the
water resources systems against future climate change.
LIMITATIONS OF THE STUDY

The study of impacts of climate change on the hydrology
of catchment area of the Tunga–Bhadra River lying
upstream of the Tungabhadra dam is carried out by
coupling a single hydrological model and downscaling
results obtained from a single GCM. The hydrological
(b)

(d)

pitation to the water balance components in the four sub-basins of the study
and B2 scenarios
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model underpredicted the high flows (flows during JJAS
period). Efforts were made to address the uncertainty
involved in the results of the present model by looking
into the magnitude of underprediction. Therefore, the
future scope of the work should be to develop a
hydrologic model that can accommodate extreme event
modelling capabilities. However, limitations also arise
because of several assumptions involved in the various
steps of modelling. Similarly, the performance of SDSM
4.2 is not found appreciably good in downscaling daily
precipitation. So, a precipitation downscaling study is
carried out using the SVM technique and is found to
perform very well.
The land use pattern is assumed to be the same in this

study. If a changed pattern of the same is assumed, the
results would have been different. Thus, the use of
different models and methodologies in hydrological
modelling and downscaling may lead to different results
and different conclusions. Hence, there are several
uncertainties to be addressed, by comparing the results
of varied methodologies adopted for the same site and
period.
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